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LANDING CHARACTmISTICS OF A REENTRY VEKCCLE WITH A 

PASSIVE LANDING SYSTEM FOR IMPACT ALLEVIATION 

By Sandy M. Stubbs 

An  experimental invest igat ion w a s  made t o  determine t h e  landing character- 
i s t i c s  of a 1/8-scale dynamic model of a reentry vehicle using a passive landing 
system t o  alleviate the  landing-impact loads. 
s i s t e d  of a f l ex ib l e  heat sh ie ld  with a s m a l l  sect ion of aluminum honeycomb placed 
between the  heat sh ie ld  and t h e  crew compartment a t  t h e  point t h a t  would be t h e  
f i rs t  t o  contact t h e  landing surface. The model w a s  landed on concrete and sand 
landing surfaces at parachute letdown ve loc i t ies .  The invest igat ions simulated 
a v e r t i c a l  veloci ty  of 30 ft/sec (full scale) ,  horizontal  ve loc i t ies  of 0, 15, 30, 
40, and 50 f t / s e c  ( ful l  sca le ) ,  and landing a t t i t udes  ranging from -30° t o  20°. 

The passive landing system con- 

The model invest igat ion indicated t h a t  s tab le  landings could be made on a 
concrete surface at horizontal  ve loc i t ies  up t o  about 30 f t / sec ,  but t h e  s t ab le  
landing-att i tude range at these speeds was  s m a l l .  The aluminum honeycomb bottomed 
occasionally during landings on concrete. When bottoming did not occur, m a x i m u m  
normal and longi tudinal  accelerations at t h e  center of gravi ty  of t he  vehicle w e r e  
approximately 5Og and 3Og, respectively.  

Results indicated stable landings could be made on sand f o r  a wide range of 
horizontal  ve loc i t ies  and negative landing a t t i t udes .  Maxi" normal and lon- 
g i tud ina l  accelerations at the  center of grav i ty  of t he  vehicle were approxi- 
mately 40g and 24g, respectively,  f o r  landings on sand. The aluminum honeycomb 
did not bottom during landings on sand. 

INTRODUCTION 

Manned spacecraft, when landed by parachute, generally require some method 
of a l lev ia t ing  t h e  landing-impact loads. The evaluation and development of e f f i -  
c ient  spacecraft landing systems tha t  a re  simple, re l iab le ,  and adaptable t o  
various landing environments are of continuing i n t e r e s t .  Since ant ic ipated infre- 
quent landings of spacecraft  allow the  use of a "one-shot" type landing system, 
t h e  qua l i t i e s  of s implici ty  and r e l i a b i l i t y  are especial ly  desirable.  A g rea t  
deal  of i n t e r e s t  i n  passive landing systems f o r  spacecraft  exists because they 
possess these desirable  qua l i t i e s .  A passive landing system i s  one i n  which 
deployment of t he  heat  sh ie ld  o r  other devices i s  not necessary. Previous inves- 
t i ga t ions  of passive landing systems at parachute letdown ve loc i t ies  have been 
l imited t o  landings on water. (See, f o r  example, refs. 1, 2, and 3 . )  Recovery 



requirements ind ica te  a need f o r  t h e  reentry vehicle  t o  have a capabi l i ty  of 
landing on land as w e l l  as on w a t e r .  
w a s  t o  determine t h e  accelerations and landing charac te r i s t ics  of a reentry 
vehicle landing on land with a passive landing system. 

The purpose of t h e  present invest igat ion 

I n  t h e  present invest igat ion it w a s  assumed t h a t  suf f ic ien t  control of t h e  
a t t i t u d e  of t h e  vehicle w a s  avai lable  t o  assure contact on a predetermined area 
of t h e  vehicle heat shield.  Att i tude control permits t h e  use of a lightweight 
impact a l l ev ia to r  placed i n  t h e  area of impact. 
s i s t e d  of a f l ex ib l e  heat sh ie ld  t h a t  would oi lcan and a s m a l l  section of aluminum 
honeycomb (impact a l l e v i a t o r )  placed between t h e  heat  sh ie ld  and the  crew com- 
partment. 
additional shock at tenuators  might be necessary f o r  t he  crew couches; however, 
couch at tenuators  were not tested i n  t h e  present invest igat ion.  

The passive landing system con- 

Because of t h e  l imited stroke of t h i s  type of passive landing system, 

A 1/8-scale dynamic model of a proposed three-man spacecraft w a s  used i n  t h e  
investigation. The model w a s  t e s t ed  a t  a v e r t i c a l  veloci ty  of 30 f t / s ec  ( f u l l  
sca le )  and horizontal  ve loc i t i e s  of 0, 15, 30, 40, and 50 f t / s ec  ( f u l l  s ca l e ) .  
Landings were m a d e  on concrete and sand landing surfaces a t  a t t i t udes  ranging 
from -30° t o  20°. 
a t t i t udes  a re  more s t ab le  than pos i t ive  a t t i tudes ;  hence, most of t he  tests were 
made at negative landing a t t i tudes .  
impact s t ruc tures  f a c i l i t y  . 

Results presented i n  reference 4 indicate  t h a t  negative landing 

The tes ts  w e r e  conducted i n  the  Langley 

A short  motion-picture f i lm supplement i l l u s t r a t i n g  the  landing motions of 
t h e  model has been prepared and i s  avai lable  on loan. A request card form and a 
descr ipt ion of t h e  f i lm w i l l  be found at the  back of t h i s  paper on the  page with 
the  abstract  cards. 

DESCRIPTION OF MODEL 

The model used i n  t h e  invest igat ion w a s  a 1/8-scale dynamic model of a pro- 
posed three-man reentry vehicle. 
model. The model w a s  constructed of f i b e r  g lass  and p las t ic ,  with the  lower sec- 
t i o n  of t h e  crew compartment made of so l id  ba lsa  wood. Mahogany blocks were 
potted i n  t h e  balsa  wood t o  serve as accelerometer mounts. (See f i g .  2 . )  The 
model weight (13.83 l b )  simulated a fu l l - sca le  weight of 7,080 pounds based on 
t h e  scale  re la t ionships  shown i n  t ab le  I. Pert inent  dimensions and moment-of- 
i n e r t i a  measurements are l i s t e d  i n  t ab le  11. A l l  values reported a re  f u l l  scale 
unless otherwise indicated.  Photographs of t he  model are shown i n  f igure  3 .  

Figure 1 shows t h e  general arrangement of t he  

The passive landing system consisted of a f l ex ib l e  heat shield and a s m a l l  
sect ion of aluminum honeycomb located between the  heat sh ie ld  and the  crew com- 
partment. The f l ex ib l e  heat shield w a s  constructed of f i b e r  glass  and p l a s t i c  
and w a s  0.020 inch thick.  The heat shield w a s  designed t o  oi lcan under i q a c t  
loads. 
c e l l  s i ze  and 0.001-inch w a l l  thickness. A sect ion 2 inches i n  diameter w a s  
placed between the  heat sh ie ld  and the  crew compartment. 
placed a t  t h e  point on t h e  heat sh ie ld  t h a t  would be the  first t o  contact t he  

The aluminum honeycomb used w a s  made of 3003-Hl9 aluminum with a 1/4-inch 

The honeycomb w a s  
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landing surface. This contact point varied with changes i n  landing a t t i t ude .  
(See f i g .  2.) The honeycomb w a s  precrushed t o  obtain a more desirable  force time 
his tory.  The precrushed shape matched the  spherical  radii of the  heat sh ie ld  and 
t h e  crew compartment, and the  honeycomb w a s  securely attached at both surfaces t o  
reduce shearing and rebound. For t h e  t e s t  a t t i t u d e  range, the  thickness of t h e  
honeycomb varied from 0.93 t o  1.08 inches because of t h e  o f f se t  center l i n e  of 
t he  crew compartment with respect t o  the  center l i n e  of t h e  heat shield.  

APPARATUS AND PROCEDURF: 

Tests of t h e  1 /8 - scde  model were made at parachute letdown ve loc i t ies  cor- 
responding t o  a v e r t i c a l  veloci ty  of 30 f t / s ec  and t o  horizontal  ve loc i t ies  of 0, 
15, 30, 40, and 50 f t / s ec .  
path, force directions,  and landing a t t i t udes .  The model w a s  landed on concrete 
and sand landing surfaces at landing a t t i t udes  from -30° t o  20'. 
of s l id ing  f r i c t i o n  between the  concrete landing surface and the  model w a s  approx- 
imately 0.35. The sand-landing t e s t s  were conducted with loose dry Standard 
O t t a w a  Testing Sand. This sand w a s  not meant t o  represent any pa r t i cu la r  t e r r a i n  
but w a s  chosen because i t s  controlled uniform charac te r i s t ics  favor reproducible 
experiments. The drag force w a s  not determined f o r  t he  sand landing surface 
because the  drag force var ies  w i t h  sand penetration. 

Figure 4 shows t h e  model acceleration axes, f l i g h t  

The coeff ic ient  

Six strain-gage accelerometers were used t o  measure accelerations.  Normal, 
longitudinal, and angular accelerations w e r e  measured about t he  center of grav i ty  
of t he  vehicle, and normal and longitudinal accelerations were measured a t  the  
center of gravi ty  of t h e  crew couch. (See f i g .  1.) The e lec t ronic  character- 
i s t i c s  of t he  accelerometers used i n  the  invest igat ion are  presented i n  t a b l e  111. 
The s ignals  f r o m  t he  accelerometers were transmitted through t r a i l i n g  cables t o  
the  recording equipment. The response of t he  recording equipment (cont ro l  box, 
oscillograph, and galvanometers) w a s  f l a t  t o  135 cps. 

Figure 5 i s  a sketch showing the  launch procedure. The pendulum w a s  released 
from a predetermined height t o  produce the  desired horizontal  velocity.  
end of one-quarter period, t he  model w a s  released, and the  f r e e  f a l l  gave the 
desired ve r t i ca l  velocity.  
electromagnet, as shown i n  f igure  6. The model re lease mechanism w a s  a photocell  
designed t o  open t h e  electromagnet e l e c t r i c a l  c i r c u i t  and allow t h e  model t o  f a l l  
f r ee .  

A t  t he  

The model w a s  at tached t o  the  launch carriage by an 

Motion pictures  were made t o  record the  landing behavior of t he  model. 

RESULTS AND DISCUSSION 

Acceleration 

Typical oscillograph records of accelerations are shown i n  f igures  7 and 8. 
Figure 7 shows acceleration t i m e  h i s t o r i e s  and maximum accelerations f o r  landings 
on concrete.' Figure 7(a) i s  an oscillograph record of a v e r t i c a l  landing at an 
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a t t i t u d e  angle of 4-60, and f igure  7(b) i s  t h e  record of a landing w i t h  a hori-  
zontal  veloci ty  at an att i tude angle of -18O.  Figure 8 shows time h i s t o r i e s  and 
maximum accelerations f o r  landings on sand. Figure 8(a) shows t h e  r e s u l t s  f o r  a 
v e r t i c a l  landing at an a t t i t u d e  angle of -16', and f igure  8(b)  shows t h e  results 
f o r  a landing with a horizontal  veloci ty  at an a t t i t u d e  angle of -15'. 
dashed l i n e s  are fairings of t h e  accelerometer t races .  
presented i n  figures 9 t o  13 were obtained from s i m i l a r  fairings. 

The 
M a x i m u m  acceleration data 

Normal accelerati2n.- Acceleration data are shown i n  f igures  9 t o  13. Fig- 
ure  9 shows maximum normal accelerations a t  t h e  center of gravi ty  of t he  vehicle 
f o r  landings on both concrete and sand landing surfaces. The shaded da ta  points 
ind ica te  t h a t  t h e  model turned over, and t h e  flagged data points  indicate  bot- 
toming. 
all t he  energy due t o  v e r t i c a l  veloci ty  of t h e  vehicle, and, as a result, a l l  of 
t h e  available s t roke of t h e  honeycomb w a s  used. When bottoming occurred the  max- 
i m u m  accelerations were appreciably higher than i n  tests i n  which bottoming did 
not occur. 
discussing the  accelerat ion trends.  

Bottoming occurred when t h e  passive landing system f a i l e d  t o  d iss ipa te  

The da ta  points f o r  which bottoming occurred are not considered i n  

For t h e  landings made on concrete ( f i g .  9(a)) ,  there  w a s  an increase i n  nor- 
m a l  accelerat ion from 16g at a landing a t t i t u d e  of -30' t o  approximately 5Og at  
a landing a t t i t u d e  of about -5'. There w a s  no discernible  e f f ec t  of horizontal  
veloci ty  on normal accelerations.  For landings made on sand ( f i g .  g (b) ) ,  there  
w a s  an increase i n  normal accelerations from 12g at a landing a t t i t ude  of -30' 
t o  approximately 40g at  a landing a t t i t u d e  of -5O. 
during t h e  landings on sand, and horizontal  veloci ty  had no e f f ec t  on normal 
accelerations.  

Bottoming did not occur 

Figure 10 shows m a x i "  normal accelerations at the  center of gravi ty  of 
t h e  crew couch. The same trends appear at the center of gravi ty  of t h e  crew 
couch t h a t  appeared a t  the  center of gravi ty  of t h e  vehicle; however, t h e  spread 
i n  maximum accelerations w a s  s l i g h t l y  greater .  For landings on concrete 
( f i g .  l O ( a ) ) ,  m a x i "  normal accelerations at t h e  center of gravi ty  of t h e  couch 
range from 1% a t  a landing a t t i t u d e  of -30' t o  63g at  a landing a t t i t ude  of -5'. 
For landings on sand ( f ig .  10(b)) ,  maximum normal accelerations at  the  center of 
gravi ty  of t h e  couch range from log  a t  a landing a t t i t u d e  of -30' t o  55g at a 
landing a t t i t u d e  of -5'. 

Normal accelerations i n  t h e  a t t i tude range between -15O and l5O w e r e  g rea te r  
than safe human tolerance l eve l s  indicated i n  reference 5 .  Thus, i f  landings at 
a t t i t udes  between -15O and 15' a re  t o  be attempted, it would seem necessary t o  
have a separate crewlcouch attenuation system with a s t roke capabi l i ty  grea te r  
than t h a t  of t h e  passive landing system reported herein.  

Longitudinal acceleration.- M a x i m u m  longi tudinal  accelerations at the ten- 
t e r  of gravi ty  of t h e  vehicle and at t h e  center of gravi ty  of the crew couch are 
presented i n  f igures  11 and 12, respectively. 
erat ions f o r  landings on concrete ( f i g .  l l ( a ) )  ranged from 1-88 at a landing a t t i -  
tude of -30' t o  about 30g at a landing a t t i t ude  of -10'. 
i b l e  e f f ec t  of horizontal  veloci ty  on longi tudinal  accelerations f o r  landings 
on concrete. The maximum longitudinal accelerations f o r  landings on sand 

The m a x i m u m  longi tudinal  accel- 

There w a s  no discern- 
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( f ig .  l l ( b ) )  ranged from approximately log t o  24g over t h e  tes t  range of negative 
landing a t t i t udes .  
accelerations w a s  noted f o r  landings on sand; however, there  does appear t o  be a 
slight increase i n  longi tudinal  acceleration with an increase i n  horizontal  veloc- 
i t y  f o r  landings on sand. The longi tudinal  accelerat ions at  the  center of grav i ty  
of t h e  crew couch ( f i g .  12)  showed t h e  same trends and were at t h e  same accelera- 
t i o n  levels as those at t h e  center of gravi ty  of t h e  vehicle. 

Essent ia l ly  no e f fec t  of landing a t t i t u d e  on longitudinal 

A n g u l a r  acceleration.- The m a x i m  angular accelerations of t he  vehicle f o r  
landings on concrete and sand are  shown i n  f igure  13. Several runs were omitted 
from figure 13 because t h e  angular accelerations exceeded t h e  range of t h e  accel- 
erometers. The maximum angular accelerations f o r  landings on concrete, shown i n  
figure l3(a), ranged from 60 t o  200 radians pe r  second per  second i n  a p i t ch  
nose-up direct ion.  The m a x i "  angular accelerations f o r  landings on sand, pre- 
sented i n  f igure  l3(b) ,  ranged from a nose-up pi tching acceleration of 140 radians 
pe r  second per  second t o  a nose-down pitching accelerat ion of 120 radians per  
second per  second f o r  landing a t t i t udes  from -20° t o  0'. 

Stab i l i t y  

Figure 1 4  shows t h e  s t a b i l i t y  of t he  model when landed on a concrete landing 
surface. The t e s t  conditions are shown as c i r c l e  da ta  points with t h e  shaded 
c i r c l e s  indicat ing turnover. Horizontal veloci ty  appears t o  have an e f f ec t  on 
s t a b i l i t y .  This e f f ec t  may be due t o  landing-surface roughness, f r i c t i o n  changes, 
angular veloci ty  of t h e  model at impact, or other varying parameters. 
presented i n  f igure  14 ind ica te  t h a t  s tab le  landings can be made on concrete f o r  
a l imited a t t i t ude  range at horizontal  ve loc i t i e s  up t o  about 30 f t / s ec .  

The data  

The s t a b i l i t y  of t h e  model when landed on a sand landing surface i s  shown i n  
f igure  15. There i s  an e f fec t  of horizontal  veloci ty  on s t a b i l i t y  t h a t  i s  due i n  
p a r t  t o  an increase i n  time through which the  drag force  i s  applied. The drag 
force a l so  increased because of penetration of t he  sand when the  vehicle w a s  
s l i d ing  at high negative landing a t t i t udes .  
"tripping" act ion which adversely affected the  vehicle s t a b i l i t y .  
l i n e  indicates  t h e  separation of t h e  s tab le  and unstable regions. The r e su l t s  
presented i n  f igure  15 ind ica te  t h a t  s tab le  landings could be made over a wide 
range of horizontal  ve loc i t i e s  and negative landing a t t i t udes .  

This penetration resul ted i n  a 
The dashed 

SUMMARY OF RFSULTS 

The landing t e s t s  of a 1 /8-scde  dynamic spacecraft  model having a passive 
landing system consisting of a f l ex ib l e  heat sh ie ld  backed up by a sect ion of 
crushable honeycomb l e d  t o  t h e  following resu l t s :  

1. The passive landing system had s tab le  landing behavior i n  landings on 
concrete f o r  horizontal  ve loc i t i e s  up t o  about 30 f t /sec,  but t h e  s tab le  landing- 
a t t i t u d e  range a t  these speeds w a s  l imited.  

5 



2. M a x i m u m  normal and longitudinal accelerations a t  the center of gravity of 
the vehicle w e r e  approximately 5Og and 3Og, respectively, f o r  landings on con- 
crete, except when bottoming occurred and gave higher accelerations. 

3 .  Stable landings could be made on loose sand f o r  a wide range of hori- 
zontal veloci t ies  and negative landing at t i tudes.  

4. Maximum normal and longitudinal accelerations at the center of gravity of 
the vehicle were approximately 40g and 24g, respectively, f o r  landings on sand. 
The aluminum honeycomb did not bottom during landings on sand. 

5 .  Additional shock attenuators f o r  t he  crew couches would be necessary 
should the spacecraft be landed at a t t i tudes  between -15' and 15'. 

Langley Research Center, 
National Aeronautics and Space Admini st rat ion, 

Langley Station, Hampton, Va., August 27, 1963. 
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TABU I.- SCAIJ3 FWXTIONSHIPS 

Scale factor  Model 

h hl 
A2 A2A 
A 3  A3W 
A5 A ~ I  
6 4% 

\Ixv fi 
A'l A-lU 

A3 h3F 

a 1 

- -r 

= Scale of modeiJ 

Gross weight, lb . . . . . . . . . . . .  
Moment of i n e r t i a  (approx.), slug-ft2: 

IX ( r o l l ) .  . . . . . . . . . . . . . .  
I y ( p i t c h )  . . . . . . . . . . . . . .  
IZ (yaw) . . . . . . . . . . . . . . .  
Diameter, in. . . . . . . . . . . . .  Body: 

Height, in .  . . . . . . . . . . . . .  - 

Quantity 

Length . . . . . . . . . . . . . . . .  
Area . . . . . . . . . . . . . . . . .  
Weight . . . . . . . . . . . . . . . .  
Moment of i n e r t i a  . . . . . . . . . .  
T i m e . . . . . . . . . . . . . . . . .  
Speed . . . . . . . . . . .  , . . . .  
Linear acceleration . . . . . . . . .  
A n g u L a r  acceleration . . . . . . . . .  

- _  . . . .  

I Force- . . . . . . . . . . . . . . . . .  
. . . .  - .  . . .  . .  - 

TABIJ3 11.- PERTINENT PARAMETERS OF REENTRY VEHICLF: 

- 
i 
I-. .. 

1/8-scale model I Full-scale vehicle I 
13 83 

0.058 
0.078 

0 095 

19 - 25 
11.19 

7,080 

154.00 
89 52 
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TABU3 111. - ACCELmOMETER CHARACTERISTICS 

Natural frequency, Range, Accelerometer 
CPS or ien t  a t ion  g u n i t s  

Damping, 
percent of 

c r i t i c a l  damping 

Normal 5100 
Longitudinal k50 
Angular k50 

8 

700 60 

312 60 
627 65 

Normal f50 444 
Longitudinal k50 444 

100 
80 



12 0 SR 
Crew 
compartment 

Heat shield 

J-  Vehicle cog. 

-1 
89-52 

I 
I 

I Forward 

Figure 1.- General arrangement of 1/8-scde dynamic model of a three-man reentry vehicle. 
All dimensions a re  i n  inches, f u l l  scale. 
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I !  

A i r  

Accelerometer Crew 
mounts conpar tmer 

(Fahog any) 
I 

Crew couch c.g. 1, 1 ,  - 7 T a k 4  -1 n 0 - IY - 

/ 1 \ Lower sect ion of \\- 

’ I‘ Fiberglas heat shield - 

- 
Forward 

Honeycomb locat ion f o r  
-150 landing a t t i t u d e  

Figure 2.- Sketch of model construction and honeycomb location. 



(a )  Flexible heat shield attached. L-62-4446 

(b) Heat shield removed. 

Figure 3.- Photographs of 1/8-scde model. 

L-62-4448 

11 



\- Angular  a c c e l e r a t i o n  

P o s i t i v e  a t t i t u d e  
I 

\. Normal ' \, J 
a c c e l e r a t i o n  

' t  \I 
Longitudinal  - // \, Zero a t t i t u d e  

a c c e l e r a t i o n  + 

Flight 

Figure 4 .- Sketches identifying acceleration axes, att i tudes,  force directions, and f l i gh t  path. 



Pendulum r e l e a  

Model r e l ease  I Landing surface 

b 

Figure 5.- Sketch showing pendulum operation during model launch and landing. 
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Figure 6.- Model on launch apparatus. L-62-4450.1 
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( a )  Horizontal velocity, 0 ft /sec;  landing at t i tude,  -16O. 

(b) Horizontal velocity, 30 ft /sec;  landing at t i tude,  -18'. 

Figure 7.- Typical oscillograph records of accelerations f o r  landings on a concrete surface. 
Vertical  velocity, 30 f t /sec.  
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Longitudinal acceleration a t  couch 

Longitudinal acceleration a t  

Normal acceleration a t  c.g. 

c.g. I 
(a) Horizontal velocity, 0 ft /sec;  landing a t t i tude ,  -16'. 

(b) Horizontal velocity, 50 ft /sec;  landing a t t i tude ,  -15'. 

Figure 8.- Typical oscillograph records of accelerations f o r  landings on sand. Vertical  velocity, 30 f t / sec .  
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( b )  Landings on sand. 

Figure 9.- Maximum normal accelerations at the center of gravity of the vehicle.  Vert ical  velocity, 
30 f t /sec.  ( A l l  values are f u l l  scale . )  
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(b) Landings on sand. 

Figure 10.- M a x I L I ”  normal acceleration at the center of gravi ty  of the  couch. Vertical velocity, 
30 f t / sec .  (U v d u e s  are  full scale.) 
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Figure 11.- Maximum longitudinal acceleration at the center of gravity of the vehicle. Vertical  
velocity, 30 f t /sec.  (AU values are  flill scale.)  
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Figure 12.- M a x i "  longitudinal acceleration at the  center of gravity of the couch. Vertical 
velocity, 30 f t / sec .  (AU values are  full scale . )  
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Figure 13.- Maxi" angular accelerations.  Vertical  velocity, 30 f t /sec.  
scale.)  

( A l l  values are  f u l l  

21 



e 

0 

01 W A nn A 
v A 

U 

9 e 0 e 

N ' 0  

10- 
-ri 
k 

00 0 

Shaded d a t a  points 
i n d i c a t e  turnover 



wl 
P c 

n r\ 

40 ;- 
I 
1 

30 - 

20 - 

I 

10 '- 

r\ 1 

0 0 0  

00 

0 0 

\ 
\ Unstable 

\ 
\ 

GO', @ O Q W  
\ 
\ 
\ 
\ 

be@ 90 
\ 
\ 
\ 
\ 
\ Stable 

G 0 0  

\ 
'\ 

\ 
I 0 I 

Shaded d a t a  points 
indicate turnover 

Figure 15.- Stabi l i ty  for landings on sand. Vertical velocity, 30 f t /sec.  ( A l l  values are full scale.) 
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